Titan Atmosphere



Titan is the only known moon with a significant atmosphere. Its atmosphere is the only nitrogen-rich dense atmosphere in the Solar System aside from Earth's. Observations of its atmosphere made in 2004 by Cassini suggest that Titan is a "super rotator", like Venus, with an atmosphere that rotates much faster than its surface. Observations from the Voyager space probes have shown that Titan's atmosphere is denser than Earth's, with a surface pressure about 1.45 times that of Earth's.
Titan's atmosphere is about 1.19 times as massive as Earth's overall, or about 7.3 times more massive on a per surface area basis. It supports opaque haze layers that block most visible light from the Sun and other sources and renders Titan's surface features obscure Titan's lower gravity means that its atmosphere is far more extended than Earth's. The atmosphere of Titan is opaque at many wavelengths and a complete reflectance spectrum of the surface is impossible to acquire from orbit. It was not until the arrival of the Cassini–Huygens spacecraft in 2004 that the first direct images of Titan's surface were obtained.

Titan's atmospheric composition in the stratosphere is 98.4% nitrogen with the remaining 1.6% composed mostly of methane (1.4%) and hydrogen (0.1–0.2%).There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene and propane, and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, argon and helium. The hydrocarbons are thought to form in Titan's upper atmosphere in reactions resulting from the breakup of methane by the Sun's ultraviolet light, producing a thick orange smog. Titan spends 95% of its time within Saturn's magnetosphere,
which may help shield Titan from the solar wind.

Energy from the Sun should have converted all traces of methane in Titan's atmosphere into more complex hydrocarbons within 50 million years a short time compared to the age of the Solar System. This suggests that methane must be somehow replenished by a reservoir on or within Titan itself. The ultimate origin of the methane in Titan's atmosphere may be its interior, released via eruptions from cryovolcanoes.

On April 3, 2013, NASA reported that complex organic chemicals could arise on Titan based on studies simulating the atmosphere of Titan. On June 6, 2013, scientists at the IAA-CSIC reported the detection of polycyclic aromatic hydrocarbons in the upper atmosphere of Titan.

On September 30, 2013, propene was detected in the atmosphere of Titan by NASA's Cassini spacecraft, using its composite infrared spectrometer This is the first time propene has been found on any moon or planet other than Earth and is the first chemical found by the CIRS. The detection of propene fills a mysterious gap in observations that date back to NASA's Voyager 1 spacecraft's first close flyby of Titan in 1980, during which it was discovered that many of the gases that make up Titan's hazy brown colored haze were hydrocarbons, theoretically formed via the recombination of radicals formed by the ultraviolet photolysisof methane, the second-most common gas in Titan's atmosphere. Voyager 1 also discovered propane, the heaviest member of the three-carbon family, and propyne, the lightest member of that family, but did not detect propene.

No comments:

Post a Comment