Sun’s Radiative zone



Below about 0.7 solar radii, solar material is hot and dense enough that thermal radiation is the primary means of energy transfer from the core. This zone is not regulated by thermal convection; however the temperature drops from approximately 7 to 2 million kelvin with increasing distance from the core.
This temperature gradient is less than the value of the adiabatic lapse rate and hence cannot drive convection. Energy is transferred by radiation—ions of hydrogen and helium emit photons, which travel only a brief distance before being reabsorbed by other ions. The density drops a hundredfold (from 20 g/cm3 to only 0.2 g/cm3) from 0.25 solar radii to the top of the radiative zone.

The radiative zone and the convective zone are separated by a transition layer, the tachocline. This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear—a condition where successive horizontal layers slide past one another. The fluid motions found in the convection zone above, slowly disappear from the top of this layer to its bottom, matching the calm characteristics of the radiative zone on the bottom. Presently, it is hypothesized (see Solar dynamo) that a magnetic dynamo within this layer generates the Sun's magnetic field.

No comments:

Post a Comment